
Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 1

18 Mobile Agents: Going for a Trip
A mobile agent is a means by which an autonomous unit of processing can be made to visit a number of

processing nodes to undertake some operation on data held at that node to be returned to some initiating

node. On arrival at a node an agent will connect itself to the host node, thereby enabling it to access the

host‟s resources. Once the interaction is complete, the agent will disconnect itself from the host‟s

resources before moving to the next host node according to some agent transfer regime. During the

course of its travels, an agent is required to collect some data from the host nodes, which it either

communicates immediately or can be accessed when the agent returns to its originating node. An agent

can also modify the nodes that it visits depending on the outcome of an interaction at a particular node.

18.1 Mobile Agent Interface

The MobileAgent interface is shown in Listing 18-1. It extends CSProcess because we want the agent to

be able to run as a process on arrival at a node. It has to extend Serializable because the agent is to be

communicated over a network. Two methods are required; connect {3}, which is passed a List of

channels and other properties by which the agent is able to communicate with its host and disconnect

{4} which is called prior to the agent moving to another node, which sets to null all the channel

connections that were created by the connect method.

01 interface MobileAgent extends CSProcess, Serializable {
02
03 abstract connect(List x)
04 abstract disconnect()
05 }

Listing 18-1 The Mobile Agent Interface

18.2 A First Parallel Agent System

The first agent system will simply send an agent round a ring of host nodes, passing a List into the host

to which the host appends another value and returns the List to the agent before the agent moves to the

next node. On its return to the root node the agent transfers the revised list to the root node before

travelling around the ring again.

18.2.1 The Agent

Listing 18-2 shows the definition of the Agent that will travel around the ring of host nodes. The process

will interface to the host node by means of the channels toLocal {7} and fromLocal {8} and will collect

data in the List results {9}. The connect method has a List parameter, c {10}, that contains two

channels that are the toLocal and fromLocal channel ends respectively {11, 12}. The disconnect

method {14-17} simply sets the local channels to null.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 2

06 class Agent implements MobileAgent {

07 def ChannelOutput toLocal
08 def ChannelInput fromLocal
09 def results = []

10 def connect (List c) {
11 this.toLocal = c[0]
12 this.fromLocal = c[1]
13 }

14 def disconnect () {
15 toLocal = null
16 fromLocal = null
17 }

18 void run() {
19 toLocal.write (results)
20 results = fromLocal.read()
21 }
22 }

Listing 18-2 The Agent Process

The Agent‟s run method, which is required because the MobileAgent interface implements the interface

CSProcess {18-20}, simply writes the value of results to the toLocal channel {19} and then reads the

results back from the fromLocal channel {20}. At which point the Agent process will terminate.

18.2.2 The Root Process

The Root process initially sends the Agent into the ring of processes and then receives the returning agent

after it has travelled around the ring to extract the results before sending the Agent around the ring

again. The structure of the process is shown in Listing 18-3.

The channels inChannel {24} and outChannel {25} connect the Root process to the ring of processes.

The property iterations {26} indicates how many times the Agent will be sent round the ring of

processes. The property initialValue {27} is a String that will be placed in the results List as the

first element of that list.

The One2OneChannels N2A {29} and A2N {30} provide the local connections between theAgent and this

node. They cannot be accessed externally from this node and hence are defined within the run {28}

method. The input and output ends of these local channels are obtained {31-34}. A variable, theAgent,

is defined {35} of type Agent that has only its results property initialised. Even though theAgent has

been defined it is not connected to this, the Root node, until it has been round the ring of host processes at

least once. More particularly, the local connections between theAgent and host cannot be made until

theAgent has been transferred to a new host.

A for loop is used to send theAgent around the ring of processes the required number of times {36}.

Initially, theAgent is written to the outChannel {37} and then the Root process waits until theAgent

can be read from its inChannel {38}, which will only happen once theAgent has passed through all the

host nodes on the ring.

The Root node can now connect to theAgent with the appropriate ends of the local connection channels

{39}. An agentManager of type ProcessMananger is defined {40} that is used to manage the operation

of the interaction of theAgent in parallel with the Root node. The agentManager is then started {41}. It

first reads the returnedResults that are written by theAgent {42} using the fromAgentInEnd input

channel. The value of returnedResults is printed on the console window {43} and then written back to

theAgent, modified to indicate the end of an iteration {44}, using the toAgentOutEnd output channel

{45}. The interaction between theAgent and the Root node is now complete, with the former having

terminated and the latter still running. The agentManager joins the Root process {46}, which has the

effect of recovering the resources used by the agentManager when the process it is managing terminates.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 3

The Root process can now disconnect theAgent from itself {47}. The Root process will now progress

to execute any outstanding iterations.

23 class Root implements CSProcess{

24 def ChannelInput inChannel
25 def ChannelOutput outChannel
26 def int iterations
27 def String initialValue

28 void run() {

29 def One2OneChannel N2A = Channel.createOne2One()
30 def One2OneChannel A2N = Channel.createOne2One()

31 def ChannelInput toAgentInEnd = N2A.in()
32 def ChannelInput fromAgentInEnd = A2N.in()
33 def ChannelOutput toAgentOutEnd = N2A.out()
34 def ChannelOutput fromAgentOutEnd = A2N.out()

35 def theAgent = new Agent(results: [initialValue])

36 for (i in 1 .. iterations) {
37 outChannel.write(theAgent)
38 theAgent = inChannel.read()
39 theAgent.connect ([fromAgentOutEnd, toAgentInEnd])
40 def agentManager = new ProcessManager (theAgent)
41 agentManager.start()
42 def returnedResults = fromAgentInEnd.read()
43 println "Root: Iteration: $i is $returnedResults "
44 returnedResults << "end of " + i
45 toAgentOutEnd.write (returnedResults)
46 agentManager.join()
47 theAgent.disconnect()
48 }
49 }
50 }

Listing 18-3 The Root Process Definition

18.2.3 The Process Node

The ProcessNode simply provides the process that is executed at each of the nodes on the ring of

processes which the agent visits. Its structure is shown in Listing 18-4. The inChannel and outChannel

properties {52, 53} provide the channel connections to the ring of channels connecting all the processes

together. The property nodeId {54} is just an integer identifier for the node. The mechanism by which

the node is connected to the agent {56-61} is identical to that previously described for the Root process

{29-34}. The value of nodeId is copied into a localValue variable {62}.

The main body of the process is an infinite loop {63} and is almost identical to that previously described

for the Root process in that on receipt of theAgent {64} they are connected together {65} and started

within a ProcessManager {66, 67}. The only difference is that the results passed from theAgent to

this process are read into currentList {68}. The value of localValue is then appended to

currentList {69} before it is written back to the agent {70}. Once theAgent has disconnected {72}

from this process it can be written to the outChannel for transfer to the next process on the ring {73}.

Finally, localValue is incremented by 10 {74} as this makes it easier to observe the behaviour after a

number of iterations around the ring of processes.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 4

51 class ProcessNode implements CSProcess{

52 def ChannelInput inChannel
53 def ChannelOutput outChannel
54 def int nodeId

55 void run() {

56 def One2OneChannel N2A = Channel.createOne2One()
57 def One2OneChannel A2N = Channel.createOne2One()

58 def ChannelInput toAgentInEnd = N2A.in()
59 def ChannelInput fromAgentInEnd = A2N.in()
60 def ChannelOutput toAgentOutEnd = N2A.out()
61 def ChannelOutput fromAgentOutEnd = A2N.out()

62 def int localValue = nodeId

63 while (true) {
64 def theAgent = inChannel.read()
65 theAgent.connect ([fromAgentOutEnd, toAgentInEnd])
66 def agentManager = new ProcessManager (theAgent)
67 agentManager.start()
68 def currentList = fromAgentInEnd.read()
69 currentList << localValue
70 toAgentOutEnd.write (currentList)
71 agentManager.join()
72 theAgent.disconnect()
73 outChannel.write(theAgent)
74 localValue = localValue + 10
75 }
76 }
77 }

Listing 18-4 The Process Node Definition

A sample of the output from the console window is shown in Output 18-1. The number of nodes,

excluding the Root node is 6 and the agent will travel round the ring of processes three times. The initial

value passed to the results property of the agent was “ex1”. This execution of the network of processes is

achieved using a script that runs each process as a concurrent process within a single JVM using the script

RunAgentSystem, available on the accompanying web site.

Number of Nodes ? 6
Number of Iterations ? 3
Initial List Value ? ex1
Root: Iteration: 1 is ["ex1", 1, 2, 3, 4, 5, 6]
Root: Iteration: 2 is ["ex1", 1, 2, 3, 4, 5, 6, "end of 1",
 11, 12, 13, 14, 15, 16]
Root: Iteration: 3 is ["ex1", 1, 2, 3, 4, 5, 6, "end of 1",
 11, 12, 13, 14, 15, 16, "end of 2",
 21, 22, 23, 24, 25, 26]

Output 18-1 Sample Console Window for the First Agent System

At the end of iteration 1 we observe that the nodeId of each node has been appended to the results list.

At the end of iteration 2, we observe that the “end of” iteration marker has been added to results and then

the modified localValue (incremented by 10 {74}) has been appended. At the end of iteration 3 we

observe that the “end of” marker for the second iteration and the doubly incremented localValues have

also been appended to results. Thus we have constructed an agent that traverses a ring of processes,

collecting data from each node and retaining it within its own internal structures. The agent makes these

collected data values able to a root node, before resuming its transit around the network.

18.3 Running the Agent on a Network of Nodes

More realistically we need to run the processes and root on separate nodes of a TCP/IP network such that

each process runs in its own JVM. This is simply achieved by the RunNode script Listing 18-5 and a

RunRoot script Listing 18-6.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 5

78 Node.getInstance().init(new TCPIPNodeFactory())

79 def int nodeId = Ask.Int ("Node identification? ", 1, 9)
80 def Boolean last = Ask.Boolean ("Is this the last node? - (y or n):")

81 def fromRingName = "ring" + nodeId
82 def toRingName = (last) ? "ring0" : "ring" + (nodeId + 1)

83 def fromRing = CNS.createNet2One(fromRingName)
84 def toRing = CNS.createOne2Net(toRingName)

85 def processNode = new ProcessNode (inChannel: fromRing,
86 outChannel: toRing,
87 nodeId: nodeId)

88 new PAR ([processNode]).run()

Listing 18-5 The Run Node Script

It is presumed that the CNS is running, after which any number of nodes can be initiated, provided the

nodes are identified from 1 to n in sequence, where n is the number of such nodes. The node

identification is used to distinguish the names of the net channels used to construct the ring of processes.

A node is initialised {78}, after which its nodeId is obtained {79}. It is determined whether this is the

last node or not {80}. The names of the net channels can then be formed. The input to a node,

fromRingName {81}, is always the name “ringn”, where n is the nodeId. The output from a node

depends upon whether it is the last node or not {82}. In the case of the last node its output name is

“ring0”, otherwise it is “ring” suffixed by the nodeId of the next node in sequence. These names can

then be used to create the network channels appropriately {83, 84}. The node can now be constructed

{85-87} and executed {88}.

89 Node.getInstance().init(new TCPIPNodeFactory())

90 def int iterations = Ask.Int ("Number of Iterations ? ", 1, 9)
91 def String initialValue = Ask.string ("Initial List Value ? ")

92 def fromRingName = "ring0"
93 def toRingName = "ring1"

94 def fromRing = CNS.createNet2One(fromRingName)
95 def toRing = CNS.createOne2Net(toRingName)

96 def rootNode = new Root (inChannel: fromRing,
97 outChannel: toRing,
98 iterations: iterations,
99 initialValue: initialValue)

100 new PAR ([rootNode]).run()

Listing 18-6 The Run Root Script

The script to run the root node is very similar, except that we need to determine the number of

iterations {90} and the initialValue of the results list {91}. The input to the root node is always

named “ring0” and its output “ring1” {92, 93}. The node is then constructed {96-99} and executed

{100}. The output from this set of nodes is similar to that of the above system and in particular, the

output from the root node is identical for the same number of nodes and iterations. This can be observed

by running the required node scripts available on the accompanying web site.

18.4 Result Returning Agent

The previous, relatively simple agent will be modified so that as it passes from node to node as well as

collecting a value from the node, it returns that value directly to the root node. The only modifications

required are to the agent and the root process. The node process is not changed in any way because the

processing is contained within the agent itself.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 6

18.4.1 The BackAgent Specification

The BackAgent is shown in Listing 18-7. An additional property, backChannel, is required {104} that is

the location of an anonymous net channel used by the agent to return values back to the root node.

101 class BackAgent implements MobileAgent {

102 def ChannelOutput toLocal
103 def ChannelInput fromLocal
104 def NetChannelLocation backChannel
105 def results = []

106 def connect (List c) {
107 this.toLocal = c[0]
108 this.fromLocal = c[1]
109 }

110 def disconnect (){
111 toLocal = null
112 fromLocal = null
113 }

114 void run() {
115 def toRoot = NetChannelEnd.createOne2Net (backChannel)
116 toLocal.write (results)
117 results = fromLocal.read()
118 def last = results.size - 1
119 toRoot.write(results[last])
120 toRoot.destroyWriter()
121 }
122 }

Listing 18-7 The BackAgent Specification

The run method {114-121} is also modified slightly to permit the return value communication. The

agent initially makes the connection for the backChannel creating an anonymous net output channel

toRoot {115}. The interaction with the node is the same as before {116, 117}. The index of the last

element in the results list is determined {118} and this element is then written to the toRoot channel

{119}. Finally, the resources associated with the toRoot channel are recovered {120}.

18.4.2 The Back Root Process

Listing 18-8 shows the structure of the BackRoot process. The properties of the process are the same as

for Root (Listing 18-3), except that an additional property, backchannel {104} is required to provide the

anonymous NetChannelInput of the channel that connects the BackAgent to the BackRoot, when it is

running in a process node. The channels required to connect the BackRoot process to the BackAgent,

when the agent is running in the BackRoot process are then defined and their input and output ends

created {130-135}. The channel address of the backChannel is then obtained and stored as

backChannelLocation {136}.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 7

123 class BackRoot implements CSProcess{

124 def ChannelInput inChannel
125 def ChannelOutput outChannel
126 def int iterations
127 def String initialValue
128 def NetChannelInput backChannel

129 void run() {

130 def One2OneChannel N2A = Channel.createOne2One()
131 def One2OneChannel A2N = Channel.createOne2One()
132 def ChannelInput toAgentInEnd = N2A.in()
133 def ChannelInput fromAgentInEnd = A2N.in()
134 def ChannelOutput toAgentOutEnd = N2A.out()
135 def ChannelOutput fromAgentOutEnd = A2N.out()

136 def backChannelLocation = backChannel.getChannelLocation()

137 def theAgent = new BackAgent(results: [initialValue],
138 backChannel: backChannelLocation)

139 def rootAlt = new ALT ([inChannel, backChannel])
140 outChannel.write(theAgent)
141 def i = 1
142 def running = true
143 while (running) {
144 def index = rootAlt.select()
145 switch (index) {
146 case 0:
147 theAgent = inChannel.read()
148 theAgent.connect ([fromAgentOutEnd, toAgentInEnd])
149 def agentManager = new ProcessManager (theAgent)
150 agentManager.start()
151 def returnedResults = fromAgentInEnd.read()
152 println "Root: Iteration: $i is $returnedResults "
153 returnedResults << "end of " + i
154 toAgentOutEnd.write (returnedResults)
155 def backValue = backChannel.read()
156 agentManager.join()
157 theAgent.disconnect()
158 i = i + 1
159 if (i <= iterations) {
160 outChannel.write(theAgent)
161 }
162 else {
163 running = false
164 }
165 break

166 case 1:
167 def backValue = backChannel.read()
168 println "Root: Iteration $i: received $backValue"
169 break
170 }
171 }
172 }
173 }

Listing 18-8 The Back Root Process

An instance of BackAgent is then constructed as theAgent {137, 138}, with property values of a list

containing the element initialValue and the backChannelLocation. The BackRoot process can

receive inputs on its inChannel, when the BackAgent returns to the BackRoot process or from the

BackAgent on the backChannel when BackAgent is running in another node. The alternative rootAlt

captures this behaviour {139}. The agent is written to the process‟ outChannel {140}. A count variable

i {141} and a Boolean running {142} are defined and initialised. The main loop of the process now

commences {143} with the determination of the source of any input communication {144}.

Case 0 {146} relates to return of the agent from an iteration around the other nodes. The agent is read

from inChannel {147} into theAgent and subsequent processing is the same as previously described,

except that a returned value has to be read from theAgent on the backChannel {155}, which is ignored.

It is interesting to note that this communication is in fact a net channel communication between two

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 8

processes running on the same node because theAgent is now executing within the BackRoot process.

The remainder of this alternative‟s coding {158-165} relates to the management of the number of

iterations and the termination of the process.

Case 1 deals with an input from the agent when it is running on another node. A variable backValue is

read from backChannel {167} and printed {168}.

18.4.3 Running BackRoot

The script to run BackRoot is shown in Listing 18-9 and again is very similar to that which ran the Root

process before.

174 Node.getInstance().init(new TCPIPNodeFactory())

175 def int iterations = Ask.Int ("Number of Iterations ? ", 1, 9)
176 def String initialValue = Ask.string ("Initial List Value ? ")

177 def fromRingName = "ring0"
178 def toRingName = "ring1"

179 def backChannel = NetChannelEnd.createNet2One()

180 def fromRing = CNS.createNet2One(fromRingName)
181 def toRing = CNS.createOne2Net(toRingName)

182 def rootNode = new BackRoot (inChannel: fromRing,
183 outChannel: toRing,
184 iterations: iterations,
185 initialValue: initialValue,
186 backChannel: backChannel)

187 new PAR ([rootNode]).run()

Listing 18-9 The Script to Run BackRoot

The only differences are the definition of an anonymous NetChannelInput backChannel {179} and its

inclusion as a property in the construction of the BackRoot process {186}.

18.4.4 Execution of the BackAgent System

Output from running the BackAgent system is shown in Output 18-2. The BackRoot process is run as

shown in Listing 18-9 and each of the nodes are run using the RunNode process (Listing 18-5), without

alteration. As the agent progresses round the network of three nodes it can be observed that the nodeId

(1, 2 and 3) is returned to BackRoot from each node. The agent then returns to the BackRoot process

where the complete contents of the results list are output. The agent then goes round the network again

and this time augmented values (11, 12, 13) are returned to BackRoot. The agent returns to BackRoot

and the extended set of values in results are printed. This is then repeated for the final iteration.

Number of Iterations ? 3
Initial List Value ? ex2
Root: Iteration 1: received 1
Root: Iteration 1: received 2
Root: Iteration 1: received 3
Root: Iteration: 1 is ["ex2", 1, 2, 3]
Root: Iteration 2: received 11
Root: Iteration 2: received 12
Root: Iteration 2: received 13
Root: Iteration: 2 is ["ex2", 1, 2, 3, "end of 1", 11, 12, 13]
Root: Iteration 3: received 21
Root: Iteration 3: received 22
Root: Iteration 3: received 23
Root: Iteration: 3 is ["ex2", 1, 2, 3, "end of 1", 11, 12, 13,
 "end of 2", 21, 22, 23]

Output 18-2 Output From the BackRoot Console Window

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 9

18.5 An Agent with Forward and Back Channels

In this variation an agent is constructed that reads a value from the root process, modifies the data held

within the agent; that data is then sent to the node running the agent, where the data is again modified and

returned to the agent. The agent then returns the last value added to the data back to the root node before

moving to the next node. This is a relatively simple modification of BackAgent but demonstrates that a

large amount of functionality can be built into agents built using parallel processing capabilities in

conjunction with network communications.

18.5.1 The Forward and Back Agent

Listing 18-10 shows the changes made to the run method of the BackAgent (Listing 18-7) to achieve the

required effect. Initially an anonymous net input channel, fromRoot is created {189} and its net channel

location determined {190}. Once the back channel, toRoot, has been created {191}, it is used to write

the fromRootLocation to the root process {192}. A value is then read from the fromRoot channel and

appended to the results list {193}. Finally, the resources associated with the fromRoot channel are

destroyed once they are no longer required {199}

188 void run() {

189 def fromRoot = NetChannelEnd.createNet2One()
190 def fromRootLocation = fromRoot.getChannelLocation()

191 def toRoot = NetChannelEnd.createOne2Net (backChannel)

192 toRoot.write(fromRootLocation)
193 results << fromRoot.read()

194 toLocal.write (results)
195 results = fromLocal.read()
196 def last = results.size - 1
197 toRoot.write(results[last])

198 toRoot.destroyWriter()
199 fromRoot.destroyReader()
200 }
201 }

Listing 18-10 The Modified Forward Back Agent

18.5.2 The Forward Back Root Process

The only changes required to the BackRoot process (Listing 18-8) to create the process that also has a

forward channel are shown in Listing 18-11. These changes both occur in the while loop and are identical

in both cases within the switch statement.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 10

202 while (running) {
203 def index = rootAlt.select()
204 switch (index) {
205 case 0:
206 theAgent = inChannel.read()
207 theAgent.connect ([fromAgentOutEnd, toAgentInEnd])
208 def agentManager = new ProcessManager (theAgent)
209 agentManager.start()

210 def forwardLocation = backChannel.read()
211 def forwardChannel = NetChannelEnd.createOne2Net(forwardLocation)
212 forwardChannel.write (rootValue)
213 rootValue = rootValue – 1

214 def returnedResults = fromAgentInEnd.read()
215 println "Root: Iteration: $i is $returnedResults "
216 returnedResults << "end of " + i
217 toAgentOutEnd.write (returnedResults)
218 def backValue = backChannel.read()
219 agentManager.join()
220 theAgent.disconnect()
221 i = i + 1
222 if (i <= iterations) {
223 outChannel.write(theAgent)
224 }
225 else {
226 running = false
227 }
228 break
229 case 1:
230 def forwardLocation = backChannel.read()
231 def forwardChannel = NetChannelEnd.createOne2Net(forwardLocation)
232 forwardChannel.write (rootValue)
233 rootValue = rootValue – 1

234 def backValue = backChannel.read()
235 println "Root: During Iteration $i: received $backValue"
236 break
237 }
238 }

Listing 18-11 The Changes Required to BackRoot to Create ForwardBackRoot

The location of the forward channel is read from backChannel {210, 230} into forwardLocation. This

is then used to create the output end of an anonymous net channel forwardChannel {211, 231}. A

variable rootValue, initially -1, is written to the forwardChannel {212 232} and then its value is

decremented by 1 {213, 233}. This means that the agent and the root processes have created a pair of

anonymous net channels that connect the two processes over which values can be interchanged as

required by the application. The agent can then interact with the process running on the remote node as

needed.

18.5.3 Forward back System Output

Output 18-3 shows typical output from the forward and back connected agent and root system. The

processes were running using the same RunNode script as before and a minor modification {182} to the

RunBackAgent script to invoke the ForwardBackRoot was required to that shown in Listing 18-9.

It can be seen that the output is very similar except that a negative number appears in the results list

before each new value is appended. At the end of each iteration a further negative number is appended,

which is the value appended when the agent is resident with the ForwardBackRoot process but for which

no value is appended by the root process itself {210-213}.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 11

Number of Iterations ? 3
Initial List Value ? ex3
Root: During Iteration 1: received 1
Root: During Iteration 1: received 2
Root: During Iteration 1: received 3
Root: Iteration: 1 is ["ex3", -1, 1, -2, 2, -3, 3, -4]
Root: During Iteration 2: received 11
Root: During Iteration 2: received 12
Root: During Iteration 2: received 13
Root: Iteration: 2 is ["ex3", -1, 1, -2, 2, -3, 3, -4, "end of 1",
 -5, 11, -6, 12, -7, 13, -8]
Root: During Iteration 3: received 21
Root: During Iteration 3: received 22
Root: During Iteration 3: received 23
Root: Iteration: 3 is ["ex3", -1, 1, -2, 2, -3, 3, -4, "end of 1",
 -5, 11, -6, 12, -7, 13, -8, "end of 2",
 -9, 21, -10, 22, -11, 23, -12]

Output 18-3 Typical Output from the Forward backward System

18.6 Let’s Go On A trip

In this final version, the ring of channels connecting the processes is dispensed with. A number of

independent nodes will be created each of which has a connection to a root node using an Any2One net

channel. Each node will create a net input channel, the location of which will be sent to the root process.

The root process will create a list of these individual node net channel locations, together with a net input

channel location for the root process. This list of net locations will be passed to the agent. The agent will

be sent to the first node in the list, where it will undertake some interaction with the local node that will

cause the updating of a results list held within the agent. The agent will then disconnect itself from the

node and cause itself to be written to the next node in the list of net channel locations. In due course it

will return to the root node where the results list will be printed. Thus the agent is going on a trip, the

precise ordering of which, it has no knowledge of in advance.

18.6.1 The Trip Agent

The TripAgent, shown in Listing 18-12, has local channels {240, 241} that enable its connection to the

node upon which it is hosted. The property tripList {242} will hold the net channel locations that form

the trip the agent will travel. The pointer property {243} indicates the next element in tripList that is

the location to which the agent will travel. The result property is a list that will be modified as the agent

travels to each node. The connect and disconnect methods are identical to those used in previous

agents {245-252}.

The run method initially writes the current results list to the node process {254} using the toLocal

channel and then reads the modified version of results from the channel fromLocal {255}. The

remainder of the processing deals with tripList processing.

It is presumed that the zero‟th element of tripList contains the net channel location for the root process.

Thus, once the value of pointer reaches zero, the trip has finished and in this case a simple message is

printed {263} because the agent can be sent to no other nodes.

If the value of pointer is greater than zero {256} then the agent can be transferred to the next node in

tripList, indicated by (pointer - 1). A net channel location is obtained from tripList using the

List method get() and this is then used to create an anonymous One2Net output channel variable called

nextChannel{258}. The agent then disconnects itself from the local node because the toLocal and

FromLocal properties will not be Serializable as they refer to addresses within this node. The agent

can now be written to nextChannel using the reference to itself this {260}.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 12

239 class TripAgent implements MobileAgent {

240 def ChannelOutput toLocal
241 def ChannelInput fromLocal
242 def tripList = []
243 def int pointer
244 def results = []

245 def connect (List c) {
246 this.toLocal = c[0]
247 this.fromLocal = c[1]
248 }

249 def disconnect (){
250 toLocal = null
251 fromLocal = null
252 }

253 void run() {
254 toLocal.write (results)
255 results = fromLocal.read()

256 if (pointer > 0) {
257 pointer = pointer - 1
258 def nextChannel = NetChannelEnd.createOne2Net (tripList.get(pointer))
259 disconnect()
260 nextChannel.write(this)
261 }
262 else {
263 println "Agent has returned to TripRoot"
264 }
265 }
266 }

Listing 18-12 The Trip Agent Definition

18.6.2 The Trip Node Process

Listing 18-13 shows the coding of the TripNode process. The property toRoot {268} is the net output

channel by which the process can communicate its net input channel location to the root process. The

property nodeId is the unique integer identification of this node {269}. Within the run method {270}

channels are created {271,272} together with their channel ends {273-276} which provide the internal

channel mechanism by which the agent communicates with the host node, as described previously (see

section 21.2.2).

An anonymous net input channel is then defined, agentInputChannel {277}, and its channel location is

written to the root process using the toRoot net output channel {278}. The node process now waits until

it can read theAgent from the agentInputChannel {279}.

Using the local channels, theAgent can be connected to the local node and then executed using a

ProcessManager {280-282}. The interaction with the agent then takes place {283-285}, after which the

agentManager can join the node process {286}, so that in this case they can both terminate.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 13

267 class TripNode implements CSProcess{

268 def ChannelOutput toRoot
269 def int nodeId

270 void run() {

271 def One2OneChannel N2A = Channel.createOne2One()
272 def One2OneChannel A2N = Channel.createOne2One()
273 def ChannelInput toAgentInEnd = N2A.in()
274 def ChannelInput fromAgentInEnd = A2N.in()
275 def ChannelOutput toAgentOutEnd = N2A.out()
276 def ChannelOutput fromAgentOutEnd = A2N.out()

277 def agentInputChannel = NetChannelEnd.createNet2One()
278 toRoot.write (agentInputChannel.getChannelLocation())

279 def theAgent = agentInputChannel.read()

280 theAgent.connect ([fromAgentOutEnd, toAgentInEnd])
281 def agentManager = new ProcessManager (theAgent)
282 agentManager.start()

283 def currentList = fromAgentInEnd.read()
284 currentList << nodeId
285 toAgentOutEnd.write (currentList)

286 agentManager.join()
287 }
288 }

Listing 18-13 The Trip Node Process

18.6.3 The Trip Root Process

Listing 18-14 shows the coding of the TripRoot process. This is very similar to previous root processes

until the part that deals with the inputting of the net channel input locations from the nodes. The

fromNodes channel {290} is the net input channel used by each of the nodes to communicate the location

of the net channel to be used by the agent in forming its tripList. The channels used to connect locally

to the agent are set up {294-299}.

The tripList is initialised with the net channel location of the fromNodes channel and will be the last

element to be accessed in the list thereby ensuring that TripRoot is the last process in the trip {300}. The

for loop {301-304} then inputs the fromNodes channel the net input channel location of each of the

nodes, which are appended to tripList. The next section of coding {305-310} gets the last element of

tripList, which becomes the net location to which the agent will be sent first. An anonymous net

output channel, firstNodeChannel, is created from the location. An instance of the TripAgent is then

constructed as theAgent after which it can be written to the firstNodeChannel.

The remainder of the coding shows the return of theAgent after the trip. It will be read from the channel

fromNodes {311}. The process interaction between theAgent and the TripRoot process is very similar

to other such root nodes {312-319}.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 14

289 class TripRoot implements CSProcess{

290 def ChannelInput fromNodes
291 def String initialValue
292 def int nodes

293 void run() {

294 def One2OneChannel N2A = Channel.createOne2One()
295 def One2OneChannel A2N = Channel.createOne2One()

296 def ChannelInput toAgentInEnd = N2A.in()
297 def ChannelInput fromAgentInEnd = A2N.in()
298 def ChannelOutput toAgentOutEnd = N2A.out()
299 def ChannelOutput fromAgentOutEnd = A2N.out()

300 def tripList = [fromNodes.getChannelLocation()]

301 for (i in 0 ..< nodes) {
302 def nodeChannelLocation = fromNodes.read()
303 tripList << nodeChannelLocation
304 }

305 def firstNodeLocation = tripList.get(nodes)
306 def firstNodeChannel = NetChannelEnd.createOne2Net(firstNodeLocation)
307 def theAgent = new TripAgent(tripList: tripList,
308 results: [initialValue],
309 pointer: nodes)
310 firstNodeChannel.write(theAgent)

311 theAgent = fromNodes.read()
312 theAgent.connect ([fromAgentOutEnd, toAgentInEnd])
313 def agentManager = new ProcessManager (theAgent)
314 agentManager.start()
315 def returnedResults = fromAgentInEnd.read()
316 println "TripRoot: has received $returnedResults "
317 toAgentOutEnd.write (returnedResults)
318 agentManager.join()
319 theAgent.disconnect()
320 }
321 }

Listing 18-14 The Trip Root Process

18.6.4 Running a Trip Node Process

The script to run a node of the system is shown in Listing 18-15. The Any2Net channel toRoot forms the

channel between the nodes and the root process.

322 Node.getInstance().init(new TCPIPNodeFactory())

323 def int nodeId = Ask.Int ("Node identification? ", 1, 9)

324 def toRoot = CNS.createAny2Net("toRoot")

325 def processNode = new TripNode (toRoot: toRoot,
326 nodeId: nodeId)

327 new PAR ([processNode]).run()

Listing 18-15 The Script To Run TripNode

18.6.5 Running the Trip Root Process

The script to run the root of the system is shown in Listing 18-16. The Net2Onet channel fromNodes

forms the net input channel from the nodes to the root process.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 15

328 Node.getInstance().init(new TCPIPNodeFactory())

329 def String initialValue = Ask.string ("Initial List Value ? ")
330 def int nodes = Ask.Int ("Number of nodes? ", 1, 9)

331 def fromNodes = CNS.createNet2One("toRoot")

332 def rootNode = new TripRoot (fromNodes: fromNodes,
333 nodes: nodes,
334 initialValue: initialValue)

335 new PAR ([rootNode]).run()

Listing 18-16 The Script to Run TripRoot

18.6.6 Output From the Trip System

The output shown in Output 18-4 was produced by a system that comprised four nodes and the trip root

process. The nodes were initialised in numerical sequence but, as can be seen, the agent visited the nodes

in a different order. This reflects the way in which the underlying system deals with inputs on an

Any2One net channel and the order in which processes are executed.

Initial List Value ? ex4
Number of nodes? 4
TripRoot: has received ["ex4", 3, 1, 2, 4]
Agent has returned to TripRoot

Output 18-4 Typical Output From the Trip System

18.7 Summary

Agents are generally considered to have their roots in actor models which are self contained, interactive,

concurrently executing objects, having internal state and that respond to messages from other agents

[Nwana]. More prosaically, an agent is that which “denotes something that produces or is capable of

producing and effect” [Rothermel] and which can migrate to many hosts thereby demonstrating that the

“concept of mobile agent supports „process mobility‟”. Mobile Agents are also considered to have their

own thread of control and to respond to received messages [Pham]. More recently, [Chalmers] has

argued that more correctly a CSP process together with the required network communication can be seen

to implement the relatively simple Mobile Agent concept described above. In the next chapter we shall

introduce a mobile process capability, where a process is loaded over a network to undertake processing

at a host node.

