
Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 1

19 Mobile Processes: Ubiquitous Wireless Access
The previous chapter showed how it is possible to create anonymous network channels over which agents

could be transferred. In this chapter we take that concept one stage further and provide a mechanism

whereby a process can be communicated from one node to another within the network. The only

requirement is that the receiving node has to run a simple process that loads the mobile process. This is

further extended to load a process from a server over a wireless network to a mobile device. The mobile

device becomes a member of the server‟s network for the duration of the interaction. The mobile device

scans for accessible wireless networks and then is able to download a process from that network by which

it can interact with the service provided.

This technology could be used in a retail environment to let stores make offers to customers, as they walk

into the store, based upon their previous shopping patterns. In addition, the store could make offers on

surplus items to customers they know might be susceptible to the offer. The only requirement is that the

customer has a mobile device into which the process loading process has been installed. The customer

would also need to store some means of identifying themselves to the store‟s systems but with loyalty or

reward cards this is not a problem.

The technology could be used in a hospital environment to allow access to electronic patient records by

registered users, using their own mobile device. The great advantage being that the location of a person

can be determined by the wireless access points that are available and this could result in the most

appropriate process being downloaded into the mobile device depending upon the user and their role.

Obviously, some form of authentication process would be required to ensure authorised access but the

advantage of this style of interaction is that no sensitive data is held in the mobile device.

Finally, it could be used in museums to provide additional resources to visitors about the items on

display. In this case, rather than using wi-fi we could use Bluetooth to give more locality of information.

The downloaded process could provide additional information in the form of an audio stream giving an

aural description of the exhibit, possibly supported by an image that shows the particular part of the

object being described. The audio stream could be in any natural language. The particular advantage for

the museum is that visitors can use their own mobile devices, provided they have the process to download

other processes.

The mobile process capability is provided by a mobile package within the jcsp.net capability. It deals

with the dynamic loading of classes over the network in an efficient manner that is totally transparent to

the programmer and of the underlying network technology. Processes are loaded just like any other

object as a Serializable data object. The processes will include some of the network channels in their

definition that will allow the loaded process to communicate from the mobile device to the server.

However, channels that enable communication from the server to the loaded mobile process will need to

be created dynamically.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 2

This application is different from others because we are running the systems of processors with different

resource capability. In particular, the requirement to run Groovy on a mobile device is problematic, given

its size and the underlying functionality it requires in terms of reflector requirements. To this end, all the

processes that execute on the mobile device are written in pure Java. They do however interact with

server processes written in Groovy. Thus this chapter demonstrates that Groovy and Java components

can be combined into a single application environment. The dominant requirement being that all devices

run using a Java Virtual Machine, which is the case with most mobile devices.

19.1 The Travellers’ Meeting System

The meeting system is a service provided by a travel authority such as a railway station or airport that

enables people travelling together to find out where other members of a group are located especially in

the event of a travel delay. A member of the group registers the name by which the group recognises

itself together with the location of where they are to congregate. Other members may try to create

another location but will be informed that the group has already been registered and given that location.

Other members will just try to find the meeting location and will be informed of its location. People who

try to find a meeting that is not yet registered are informed of this case.

The primary requirement is for an initial channel by which a mobile device can register itself with the

server network. This is similar to the Request channel used in the pervious chapter to make requests to

the printer spooling service. All the PrintUser processes knew that the access channel was called

Request. The situation becomes more complex as we move to a more general environment. If the

process loaded into the mobile device is to function with all such publicly available service providers then

they are all going to have to use the same name for their access channel. In the case of the hospital

environment briefly described above this name would not be made publicly available.

Once the initial mobile process has been loaded this can then be used to determine the required service

and then further processes can be loaded using private access channels. In the meeting example the initial

mobile process will be loaded using the publicly available access channel. The initial mobile process will

then determine, by means of a user interaction, whether the user wants to create a new meeting location or

find an existing meeting and then load the required process using private channels.

19.2 Ubiquitous Access Client

The Ubiquitous Access Client (UAC) is the process that executes within the mobile device scanning for

wireless access points (WAP) connected to networks that are offering services based upon the

ubiquitously available access channel. Such a network is defined by the IP address of the node upon

which the CNS executes. For the purposes of this description the coding to scan for such a WAP is

ignored and we shall just type in the IP address of the node upon which the CNS is running. As indicated

above the process is written in Java rather than Groovy. The coding of the process is shown in Listing

19-1, from which all the unnecessary coding has been removed. The process is run as a main, rather than

using the CSProcess interface with a run method {1, 3}. The channel processReceive {2} will be used

to input a process from the server, once the connection to the network has been made. Note the relative

complexity of defining class properties, when compared with that required by Groovy, which determines

types at run-time.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 3

01 public class UASSSClient {

02 private static NetAltingChannelInput processReceive;

03 public static void main(String[] args) {

04 String CNS_IP = Ask.string("Enter IP address of CNS: ");
05 try {
06 Mobile.init(Node.getInstance().init(new TCPIPNodeFactory(CNS_IP)));
07 String processService = "A";
08 NetChannelLocation serverLoc = CNS.resolve(processService);
09 NetChannelOutput toServer = NetChannelEnd.createOne2Net(serverLoc);
10 processReceive = Mobile.createNet2One();
11 toServer.write(processReceive.getChannelLocation());
12 MobileProcess theProcess = (MobileProcess)processReceive.read();
13 new ProcessManager(theProcess).run();
14 }
15 catch (NodeInitFailedException e) {
16 System.out.println("Failed to connect to Server");
17 System.exit(-1);
18 }
19 }
20 }

Listing 19-1 The Ubiquitous Access Client

The address of the CNS server is obtained, simply by reading it in from the console {4}. The package

Mobile builds upon the CNS and enables the creation of network nodes {6} that are able to manipulate

mobile processes. It is possible for the creation of a node to fail and thus the coding is enclosed in a try

– catch block {5, 15-17}. For the purposes of this system, the universal access channel to the server is

called “A” {7}. The mobile device, running this process, can presume that this channel already exists and

thus can resolve that channel‟s location as serverLoc {8}. That location can then be used to create a

net output channel called toServer, which connects the mobile device to the server {9}. The channel

processReceive {10} is created as a Net2One input channel, within the network that contains the server

and CNS with which the mobile device is interacting.

The location of processReceive is then written to the server using the previously determined toServer

channel {11}. It should be noted that any number of mobile devices could be attempting this connection

at the same time. Recall that net input channels are implements as Any2One and so this does not cause

any problem provided the mobile device only sends one communication over the channel. The server

uses the net channel location of processReceive to output a MobileProcess which can then be read by

the mobile device into theProcess {12}. Finally, theProcess is executed within a ProcessManager

{13}, which allows a process to be spawned concurrently with the currently executing process. At this

point an initial mobile process has been downloaded from the server into the mobile device and the

interaction with the user can commence.

Examination of Listing 19-1 shows that the code that has to be executed in a mobile device that permits

the downloading of processes from service providers is very simple. The process that scans for available

wireless networks that are providing the ubiquitous access capability has not been included but can be run

in the same JVM as a parallel process [chalmers]. A reduced form of the JCSP can be incorporated

(JCSPme [chalmers]) into the mobile device, thereby enabling a parallel processing capability in a mobile

device. The mobile package [chalmers] also contains a means of downloading classes across the network

in a totally transparent manner, thus any class not loaded as part of the initial process download, say for

example a class used within a process, can be dynamically loaded when required. This downloading is

undertaken on a class basis rather than requiring the downloading of the whole assemblage of classes that

might possibly be required. Thus JCSPme might not contain, for example, the jcsp.awt classes but

these can be downloaded as they are required over the network. Moreover only the required classes are

downloaded, rather than the entire jar file containing jcsp.awt. JCSPme has a total footprint of about

90Kbytes.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 4

The great advantage of this approach to mobile computing is that the processes executed within the

mobile device are created and maintained by the service provider. The resources used within the mobile

device can be recovered automatically, once the interaction between mobile device and service provider

has terminated. The interaction is fully under the control of the service provider and is not reliant upon

on third party software supplier such as a web browser. The data transferred between the mobile device

and the service provider‟s system tends to be much smaller and more focussed than say the transfer of a

web page. Furthermore the interaction with the user can be better organised and managed because the

precise nature of the data transferred is known. Thus the remainder of this chapter focuses on the

processes that are downloaded into the mobile device and the server processes required to support the

service.

19.3 The Initial Mobile Process

Like all the processes that are downloaded into the mobile device, the initial mobile process comprises

three processes. First a process that causes the other two processes to run in parallel. The second process

provides a graphical user interface to the third process which contains the required functional capability.

In the case of the initial mobile process all three processes will be described in detail. Other downloaded

processes will only have their capability process discussed.

19.3.1 The Access Client Process

Listing 19-2 shows the AccessClientProcess, which causes the running, in parallel, of the capability

and user interface processes.

21 public class AccessClientProcess extends MobileProcess {

22 public void run () {

23 final Any2OneChannel events = Channel.createAny2One();

24 final CSProcess[] network = {
25 new AccessClientCapability (events.in()) ,
26 new AccessClientUserInterface (events.out())
27 };

28 new Parallel (network).run();
29 }
30 }

Listing 19-2 The Initial Mobile Process – AccessClientProcess

The AccessClientProcess extends MobileProcess {21} and implements a single method run {22}.

The abstract class MobilePocess implements the interfaces CSProcess and Serializable. The

underlying JCSP implementation uses arrays of processes rather then the Groovy list based formulation.

Hence, an array of CSProcesses is created as network {24-27}. This is then executed using the

Parallel class {28}. The channel events provides the connection between the user interface process

AccessClientUserInterface {26} and the AccesClientCapability process {25}. The user interface

has two buttons of which only one can be clicked at any one time and so an Any2One channel is the most

appropriate choice.

19.3.2 The Access Client User Interface Process

Listing 19-3 shows the coding of the user interface process used by the initial mobile process.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 5

31 public class AccessClientUserInterface implements CSProcess {

32 private ChannelOutput buttonEvent;

33 public AccessClientUserInterface(ChannelOutput buttonEvent) {
34 this.buttonEvent = buttonEvent;
35 }

36 public void run() {
37 final ActiveClosingFrame root = new ActiveClosingFrame (
38 "Jon's Meeting Service");
39 final Frame mainFrame = root.getActiveFrame();
40 mainFrame.setSize (320, 480);
41 mainFrame.setLayout (new BorderLayout());

42 final ActiveButton newButton = new ActiveButton (
43 null, buttonEvent, "Create New Meeting");
44 final ActiveButton findButton = new ActiveButton (
45 null, buttonEvent, "Find Existing Meeting");

46 final Container buttonContainer = new Container();
47 buttonContainer.setSize(320,480);
48 buttonContainer.setLayout (new GridLayout (2,1));
49 buttonContainer.add (newButton);
50 buttonContainer.add (findButton);
51 mainFrame.add (buttonContainer, BorderLayout.CENTER);
52 mainFrame.pack();
53 mainFrame.setVisible(true);

54 final CSProcess [] network = {
55 root,
56 newButton,
57 findButton
58 };

59 new Parallel (network).run();
60 }
61 }

Listing 19-3 The Access Client User Interface Process

The process implements the CSProcess interface {31} and declares buttonEvent as a private

ChannelOutput property {32}. The process constructor is shown next {33-35}. The run method {36} is

similar to the user interfaces defined previously. It comprises two active buttons newButton {42-43} and

findButton {44-45}, which respectively indicate that the user wants to create a new meeting or find an

existing meeting. These buttons are placed in buttonContainer {46} and added to the mainframe of the

interface {52}. An array of CSProcess, called network, is then defined {54-58} and then executed as a

Parallel {59}.

19.3.3 The Access Client Capability Process

The AccesClientCapability process, shown in Listing 19-4 receives inputs from the user interface

process described previously on its private eventChannel property {63}, which is the only property

that has to be initialised in the class constructor {64-66}. The user interface has only two active buttons,

newButton {42} and findButton {44} both of which output to the Any2One channel events {23} and

thus the capability process only has to determine which of the buttons has been activated. The run

method {67} reads in the eventType from the eventChannel {68} and then using a simple if statement

sets the required serviceName to either N or F {69}. These are the names by which the service request

channels for a new-meeting or find-meeting process are accessed. These channels have already been

registered with the CNS and thus the access capability process simply has to resolve the required channel.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 6

62 public class AccessClientCapability implements CSProcess {

63 private ChannelInput eventChannel;

64 public AccessClientCapability(ChannelInput eventChannel) {
65 this.eventChannel = eventChannel;
66 }

67 public void run () {
68 final String eventType = (String) eventChannel.read();

69 String serviceName = (eventType == "Create New Meeting") ? "N" : "F" ;

70 final NetChannelLocation serverLoc = CNS.resolve(serviceName);
71 final NetChannelOutput toServer =
72 NetChannelEnd.createOne2Net(serverLoc);
73 final NetChannelInput processReceive = Mobile.createNet2One();
74 toServer.write(processReceive.getChannelLocation());
75 final MobileProcess theProcess = (MobileProcess)processReceive.read();
76 new ProcessManager(theProcess).run();
77 }
78 }

Listing 19-4 The Access Client Capability Process

The output channel location is resolved using the determined serviceName {70} after which, a net

output channel toServer can be created {71-72} that connects this mobile device to the service

provider‟s server. A net input channel is then created, processReceive using the Mobile package,

because this channel will be used to load the desired service process capability. The toServer channel is

then used to write {74} the location of the processReceive channel to the server by calling the

getChannelLocation method. The location of a net channel comprises its IP address, port number and a

channel number, which together uniquely identify the input location. A net output channel end can be

created from this information. The server process will thus create an output channel connected to the

processReceive input channel upon which it will write the required mobile process.

The required service process is then read into theProcess {75}, after which it is executed by creating an

instance of the ProcessManager class {76}. The AccessClientCapability process terminates once the

service process itself terminates. The resources used by the mobile device are thereby recovered and no

data or process code resulting form these interactions are left in the device.

19.4 New Meeting Processing

The service processes downloaded into the mobile device will have a net channel already created by

which it can send data from the mobile device to the server. However, the service process will also need

to input data from the server, informing the mobile device user where the group of people is located. In

order to do this the location of a net input channel will have to be sent to the server. The simplest way of

doing this is to create an object, MeetingData, by which data can be transferred between the mobile

device and the server.

19.4.1 The MeetingData Class Definition

The properties of the MeetingData class, Listing 19-5, comprise the NetChannelLocation of the

returnChannel {80}, which the server uses to return data to the mobile Device. The meeting server will

ensure a quality of service by ensuring that it only allows the parallel execution, in different mobile

devices, of a specific maximum number of client processes. The identity of the client used is stored in the

property clientId {81}. Two properties, meetingName and meetingPlace are used {82, 83} to hold

the name of the meeting and the place where they are meeting, with attendees indicating the number of

people who have already joined the group {84}.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 7

79 public class MeetingData implements Serializable {

80 private NetChannelLocation returnChannel;
81 private int clientId;
82 private String meetingName;
83 private String meetingPlace;
84 private int attendees;

85 // constructors omitted
86 // several getter and setter methods omitted

87 public NetChannelLocation getReturnChannel() {
88 return returnChannel;
89 }
90 public void setReturnChannel(NetChannelLocation returnChannel) {
91 this.returnChannel = returnChannel;
92 }
93 }

Listing 19-5 The MeetingData Class (part)

The class MeetingData is written in Java because it is accessed within the mobile device and thus

requires constructor, get and set methods, most of which have been omitted as they are well understood

by Java developers and further can be easily created by an IDE such as Eclipse. The get and set

methods for manipulating the returnChannel property have been shown {87-92}. This data object will

also be accessed on the server side of the system, which is coded in Groovy, and therefore these

properties will also be accessed using the „dot‟ notation available in Groovy, thereby demonstrating the

fact that Groovy and Java coding can be mixed in the same application.

19.4.2 The New Meeting Client Capability

The NewMeetingClientCapability process, Listing 19-6, contains two properties that are used by the

server. The clientId property {95} is the unique identifier of this instance of the process. The

NetChannelLocation property {96}, clientServerLocation, is a location that this process can use to

create a net output channel by which the mobile device outputs data to the server. The remaining

properties {97-101} are channels by which the NewMeetingClientCapability process communicates

with its associated graphical user interface process.

The run method {102} initially creates the channel that connects the mobile device to the server as

client2Server {103-104}. It then creates the NetChannelInput server2Client {105} that is used to

receive inputs from the server. The corresponding net input channel location will be sent to the server as

the returnChannel in an instance of MeetingData {106} called clientData. The properties of

clientData are set using the appropriate set methods {107-110}. The returnChannel is set to the

channel location of server2Client {107}. The identifier of the client being used is set {108}. The

name of the meeting and the place where the group is meeting are read from the user interface and stored

in the corresponding properties of clientData {109, 110}. This data object is now complete and can be

written to the server using the client2Server net channel {111}. The process then waits for a response

from the server, thereby implementing the client-server behaviour. The server process, see the

description of the Meeting process (21.6.5), creates a net output channel based upon the location for

server2Client, it receives in the returnChannel property of the clientData object.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 8

94 public class NewMeetingClientCapability implements CSProcess {

95 private int clientId;
96 private NetChannelLocation clientServerLocation;

97 private ChannelInput meetingNameEvent;
98 private ChannelInput meetingLocationEvent;
99 private ChannelOutput registeredConfigure;
100 private ChannelOutput registeredLocationConfigure;
101 private ChannelOutput attendeesConfigure;

102 public void run () {
103 final NetChannelOutput client2Server =
104 Mobile.createOne2Net(clientServerLocation);
105 final NetChannelInput server2Client = Mobile.createNet2One();

106 MeetingData clientData = new MeetingData();
107 clientData.setReturnChannel (server2Client.getChannelLocation());
108 clientData.setClientId (clientId);
109 clientData.setMeetingName ((String) meetingNameEvent.read());
110 clientData.setMeetingPlace ((String) meetingLocationEvent.read());
111 client2Server.write(clientData);

112 final MeetingData replyData = (MeetingData) server2Client.read();
113 if (replyData.getAttendees() == 1) {
114 registeredConfigure.write("Registered");
115 }
116 else {
117 registeredConfigure.write("ALREADY Registered");
118 }
119 registeredLocationConfigure.write(replyData.getMeetingPlace());
120 attendeesConfigure.write(new String (" " + replyData.getAttendees()));
121 }
122 }

Listing 19-6 The New Meeting Client Capability (part)

An object of type MeetingData is read from server2Client into replyData {112}, the contents of

which are then used to output appropriate messages on the user interface of the mobile device. The

attendees property indicates whether this is genuinely a new meeting because the person creating the

meeting is the first attendee {113, 114} or whether the meeting has already been registered {117}. The

location of the meeting and the number of attendees can be written to the user interface using the

configure channels of the ActiveLabels contained within the user interface process {119, 120}. Note

that the property meetingPlace will only be modified by the Meeting process if the meeting has been

previously registered.

19.5 Find Meeting Processing

Find meeting processing is very similar to that required for creating a new meeting and thus its structure

is very similar. The FindMeetingClientCapability process is shown in Listing 19-7. The

initialisation of the required channels and clientData are identical except that a location for the meeting

is not known as it will be returned from the Meeting process, assuming the meeting has been registered

{131-138}. Once the replyData has been received {139}, it can be used to output data to the

ActiveLabels on the associated user interface process using their configure channels. If the number of

attendees is returned as zero {140} then the meeting has not yet been registered. At this point the

process could have automatically loaded the NewMeetingClientProcess, but this option has not been

chosen for ease of explanation.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 9

123 public class FindMeetingClientCapability implements CSProcess {

124 private NetChannelLocation clientServerLocation;
125 private int clientId;

126 private ChannelInput meetingNameEvent;
127 private ChannelOutput registeredConfigure;
128 private ChannelOutput registeredLocationConfigure;
129 private ChannelOutput attendeesConfigure;

130 public void run () {
131 final NetChannelOutput client2Server =
132 Mobile.createOne2Net(clientServerLocation);
133 final NetChannelInput server2Client = Mobile.createNet2One();

134 final MeetingData clientData = new MeetingData();
135 clientData.setReturnChannel (server2Client.getChannelLocation());
136 clientData.setClientId (clientId);
137 clientData.setMeetingName ((String) meetingNameEvent.read());
138 client2Server.write(clientData);

139 final MeetingData replyData = (MeetingData) server2Client.read();
140 if (replyData.getAttendees() == 0)
141 {
142 registeredConfigure.write("NOT Registered");
143 }
144 else
145 {
146 registeredConfigure.write("Registered");
147 registeredLocationConfigure.write(replyData.getMeetingPlace());
148 attendeesConfigure.write(new String (" " + replyData.getAttendees()));
149 }
150 }
151 }

Listing 19-7 The Find Meeting Client Capability (part)

19.6 The Server Side

The server side processing comprises a number of processes running in parallel as shown in Figure 19-1.

Each capability is managed by a pair of processes, a server and a sender. The server registers the service

channel with the CNSServer which can be subsequently resolved by the specific capability when

providing the service within the mobile device. The access server and sender are specific to the

requirements of the initial access by a mobile device because there is no requirement to access the

meeting database process. All the processes of the meeting organiser are constructed in Groovy.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 10

Figure 19-1 The Meeting Organiser Internal Process Architecture

19.6.1 The Access Server Process

The AccessServer process is shown in Listing 19-8 and simply creates an instance of the process

MultiMobileProcessServer from the package org.jcsp.net.mobile {155}. The properties of which

are the name of the channel by which the service is accessed “A” and the name of the channel by which

instances of the AccessClientProcess are sent to this process. In this case the channel is passed as a

property fromAccessSender {153} of the AccessServer process. Once theServer has been

constructed it can be executed {156}. An instance of MultiMobileProcessServer simply responds to

requests received on its named service channel with instances of mobile processes received on its input

channel. This simplicity hides the fact that the underlying system is capable of dynamically loading class

files over the network. In particular, classes are only loaded as they are needed. Thus in this case the

class file for the AccessClientProcess will be loaded. When this executes on the mobile device it will

be found that the AccessClientCapability and AccessClientUserInterface processes are required

and a request for these processes‟ class definitions will be generated automatically by the mobile device,

to which the AccessServer responds.

152 class AccessServer implements CSProcess {

153 def ChannelInput fromAccessSender

154 void run() {
155 def theServer = new MultiMobileProcessServer("A", fromAccessSender)
156 new PAR ([theServer]).run()
157 }
158 }

Listing 19-8 The Access Server Process

19.6.2 The Access Sender Process

The AccessSender process shown in Listing 19-9 has one property, toAccessServer {160} that is the

channel that connects it to the AccessServer process. The run method {161} simply defines an instance

of the AccessClientProcess, AClient {162}, which is then repeatedly written to the AccessServer

process {164}. Any number of mobile device users can be running the AccessClientProcess at the

same time without restriction.

Meeting

Organiser
AccessServer AccessSender

AccessConnection

Meeting
Database

requestChannels

Server
Sender
(New
Meeting)

new Serve2Send

newSend2Serve

Server
Sender
(Find

Meeting)

findServe2send

findSend2Serve findReuse

newReuse

 CNSServer

N

F

A

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 11

159 class AccessSender implements CSProcess {

160 def ChannelOutput toAccessServer

161 void run() {
162 def AClient = new AccessClientProcess()
163 while (true) {
164 toAccessServer.write(AClient)
165 }
166 }
167 }

Listing 19-9 The Access Sender Process

19.6.3 The Server Process Definition

The Server process shown in Listing 19-10 has three properties {169-171} all of which are passed

directly to the instance of the MultiMobileProcessServer that is defined as theServer { 173-174} and

then run {175}. In this construction the MultiMobileProcessServer responds to requests on the service

channel represented by serviceName. It requests an instance of a mobile process from its associated

Sender process on its toSender channel, which it reads from its fromSender channel. The mobile

process is then written the net channel location obtained from the channel associated with the

serviceName {64, 65}. This interaction is contained within the process MultiMobileProcessServer.

168 class Server implements CSProcess {

169 def ChannelInput fromSender
170 def ChannelOutput toSender
171 def String serviceName

172 void run() {
173 def theServer = new MultiMobileProcessServer(serviceName,
174 fromSender, toSender)
175 new PAR ([theServer]).run()
176 }
177 }

Listing 19-10 The Server Process

19.6.4 The Sender Process Definition

Listing 19-11 shows the definition of the Sender process that implements a relatively crude form of

service quality management. The properties toServer {179} and fromServer {180} are used to create

the connections between the Server and Sender process described above.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 12

178 class Sender implements CSProcess {

179 def ChannelOutput toServer
180 def ChannelInput fromServer
181 def List clients
182 def ChannelInput reuse
183
184 void run() {
185 def serviceUnavailable = new NoServiceClientProcess()
186 def n = clients.size()
187 def clientsAvailable = []
188 for (i in 0 ..< n) {
189 clientsAvailable.add(clients[i])
190 }
191 def alt = new ALT ([reuse, fromServer])

192 while (true) {
193 def index = alt.select()
194 if (index == 0) {
195 def use = reuse.read()
196 clientsAvailable.add(clients[use])
197 }
198 else {
199 fromServer.read()
200 if (clientsAvailable.size() > 0) {
201 toServer.write(clientsAvailable.pop())
202 }
203 else {
204 toServer.write(serviceUnavailable)
205 }
206 }
207 }
208 }
209 }

Listing 19-11 The Sender Process

The List clients {181} is a list of service processes that this Sender process can send to its Server.

The channel reuse {182} is used to inform the Sender process that a specific client can be reused. A

mobile process called NoServiceClientProcess has been defined that informs the user that resources

are currently not available and that they should try again later. The definition of this process has not been

explained but is similar to the other downloadable processes. An instance of this process is defined as

serviceUnavailable {185}. The number of client processes in the list clients is obtained as n {186}.

A list of clients that are available is created in another list, clientsAvailable {187}, which is populated

by adding each element of clients {188-190}.

The Sender process can receive inputs on either of its input channels and thus these form the guards of

the alternative alt {191}. The main loop of the process {192} determines the index of the alternative

that has been selected {193}. In the case of an input on the reuse channel {194}; the identifier of a client

that can be re-used can be read from the reuse channel {195}. The corresponding client is added to

clientsAvailable {196}.

If the input is a signal on the fromServer channel {198}, it is read {199}. If clientsAvailable is not

empty {200} then the next process from clientsAvailable is popped and written to the channel

toServer {201}. Otherwise, the process serviceUnavailable is written to the channel toServer

{204}. In this manner the number of service processes running in parallel on different users mobile

devices is restricted to the number of processes initially passed to the Sender process when it is

constructed.

19.6.5 The Meeting Database Process

The Meeting process is shown in Listing 19-12. The List property requestChannels {211} comprises

the input ends of the net channels that are passed to each of the NewMeetingClientProcess and

FindMeetingClientProcess as their clientServerLocation property {96, 124}. The properties

nReuse and fReuse {212, 214} provide the channel connection between the Meeting process and the two

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 13

Sender processes, see Figure 19-1. The properties newClients and findClients {213, 215} are the

number of NewMeetingClientProcesses and FindMeetingClientProcesses respectively.

MeetingMap {217} is the database that maintains the list of registered meetings and their locations. The

process alternates over the requestChannels {218}. The main loop of the process {219} determines the

enabled channel within alt {220}. It is presumed that the requestChannels are ordered such that inputs

from the NewMeetingClientProcesses precede those of the FindMeetingClientProcesses and that

the number of newClients can be used to differentiate the required processing {222, 238}.

In both cases the request is read into an object of type MeetingData {223, 239}. A replyData object is

created of the same type {224, 240} and then a net output channel, reply, is constructed from the

returnChannel property of the object that has been read {225, 241}. A test is then undertaken to

determine whether or not the meeting already exists {226, 242} and the subsequent processing depends

on its outcome.

In the case where the request is to create a new meeting that already exists {227, 228} the required

replyData is obtained from the existing meetingMap entry and the number of attendees incremented;

otherwise the replyData is constructed from newMeeting and the number of attendees set to 1 {231,

232}. The replyData is then put back into the meetingMap {234} and written to the previously created

reply channel {235}. Finally, the value of clientId that was read is written to the nReuse channel

thereby enabling the re-use of the client {236}.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 14

210 class Meeting implements CSProcess {

211 def List requestChannels
212 def ChannelOutput nReuse
213 def int newClients
214 def ChannelOutput fReuse
215 def int findClients

216 void run() {
217 def meetingMap = [:]
218 def alt = new ALT (requestChannels)

219 while (true) {
220 def index = alt.select()
221 switch (index) {

222 case 0 ..< newClients :
223 def newMeeting = requestChannels[index].read()
224 def replyData = new MeetingData()
225 def reply = Mobile.createOne2Net(newMeeting.returnChannel)
226 if (meetingMap.containsKey(newMeeting.meetingName)) {
227 replyData = meetingMap.get(newMeeting.meetingName)
228 replyData.attendees = replyData.getAttendees() + 1
229 }
230 else {
231 replyData = newMeeting
232 replyData.attendees = 1
233 }
234 meetingMap.put (replyData.meetingName, replyData)
235 reply.write(replyData)
236 nReuse.write(replyData.clientId)
237 break

238 case newClients ..< (findClients + newClients) :
239 def findMeeting = requestChannels[index].read()
240 def replyData = new MeetingData()
241 def reply = Mobile.createOne2Net(findMeeting.returnChannel)
242 if (meetingMap.containsKey(findMeeting.meetingName)) {
243 replyData = meetingMap.get(findMeeting.meetingName)
244 replyData.attendees = replyData.attendees + 1
245 meetingMap.put (replyData.meetingName, replyData)
246 }
247 else {
248 replyData = findMeeting
249 replyData.attendees = 0
250 }
251 reply.write(replyData)
252 fReuse.write(replyData.clientId)
253 break
254 }
255 meetingMap.each{println "Meeting: ${it.key}"}
256 }
257 }
258 }

Listing 19-12 The Meeting Database Process

The processing for the case where the input request is from a find meeting client process {238-254} is

very similar and depends upon whether or not the meeting has already been created. If the meeting

already exists then the number of attendees is incremented {244} and the meetingMap entry

replaced{245}; otherwise the returned value of attendees is set to zero and no entry is placed in the

meetingMap {249}. At the end of each interaction the entries in the meetingMap are printed {255} to the

console window as a means of checking the operation of the Meeting process.

19.6.6 The Meeting Organiser

The script to run the meeting system is shown in Listing 19-13. Initially, the IP address of the node upon

which the CNS is running is obtained by means of user interaction {259} and this value is used initialise

the node running the Meeting Organiser {260}. The number of concurrent New and Find Meeting

Clients is then obtained {261, 262} as nSize and fSize respectively.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 15

259 def CNS_IP = Ask.string("Enter IP address of CNS: ")
260 Mobile.init(Node.getInstance().init(new TCPIPNodeFactory(CNS_IP)))

261 def nSize = Ask.Int("Number of Concurrent New Meeting Clients? ", 1, 2)
262 def fSize = Ask.Int("Number of Concurrent Find Meeting Clients? ", 1, 3)

263 def netChannels = []

264 def NMCList = []
265 for (i in 0 ..< nSize) {
266 def c = Mobile.createNet2One()
267 netChannels << c
268 NMCList << new NewMeetingClientProcess(c.getChannelLocation(), i)
269 }

270 def FMCList = []
271 for (i in 0 ..< fSize) {
272 def c = Mobile.createNet2One()
273 netChannels << c
274 FMCList << new FindMeetingClientProcess(c.getChannelLocation(), i)
275 }

276 def newServe2Send = Channel.createOne2One()
277 def newSend2Serve = Channel.createOne2One()
278 def newReuse = Channel.createOne2One()
279 def findServe2Send = Channel.createOne2One()
280 def findSend2Serve = Channel.createOne2One()
281 def findReuse = Channel.createOne2One()
282 def accessConnection = Channel.createOne2One()

283 def processList = [
284 new AccessSender(toAccessServer:accessConnection.out()),
285 new AccessServer(fromAccessSender:accessConnection.in()),
286 new Server(fromSender:newSend2Serve.in(),
287 toSender:newServe2Send.out(),
288 serviceName: "N"),
289 new Sender(toServer:newSend2Serve.out(),
290 fromServer:newServe2Send.in(),
291 reuse:newReuse.in(), clients: NMCList),
292 new Server(fromSender:findSend2Serve.in(),
293 toSender:findServe2Send.out(),
294 serviceName: "F"),
295 new Sender(toServer:findSend2Serve.out(),
296 fromServer:findServe2Send.in(),
297 reuse:findReuse.in(), clients: FMCList),
298 new Meeting(requestChannels: netChannels,
299 nReuse: newReuse.out(),
300 newClients: nSize,
301 fReuse: findReuse.out(),
302 findClients: fSize)
303]
304 new PAR(processList).run()

Listing 19-13 The Meeting Organiser Script

The list netChannels {263} is used to hold all the net input channels that form the requestChannels

property of Meeting {298}, see Figure 19-1. The list NMCList is used to hold the list of

NewMeetingClientProcesses that will be passed as the clients property of a Sender {291}. The for

loop {265-269} iterates over nSize and creates a NetChannelInput c {266}, which is appended to

netChannels {267}. An instance of NewMeetingClientProcess is then appended to NMCList {268}, in

which the clientServerLocation property {96} is assigned the NetChannelLocation of c and the

clientId property {95} is assigned the loop variable i. Recall that the NewMeetingClientProcess is

written in Java and thus there will be an explicit constructor for this process. Lines {270-275} build the

same structures for the FindMeetingClientProcesses. Note that the netChannels list contains the net

input channels for both new and find meeting clients in the order expected by the Meeting process {222,

238}.

The One2OneChannels required to connect the processes within the Meeting Organiser are now defined

{276-282} as per Figure 19-1. The processList {283} creates the network of processes required to

implement the architecture.

Jon Kerridge / Let‟s Do It In Parallel (c) Jon Kerridge 2010 16

19.7 System Operation

In order to observe the operation of the system; it is first necessary to run an instance of CNS. The

MeetingOrganiser should then be run and a suitable number of new and find meeting client processes

should be created as per the interaction {261, 262}. The MeetingOrganiser will now be initialised and

is awaiting interactions. In the first instance this can be tested in-situ by running an instance of

UASSSClient. The Access Client User Interface will appear and this can then be used to create a

meeting. The console window associated with the MeetingOrganiser will show that the meeting of the

input name has been created. The windows associated with UASSSClient should be closed and it will be

noticed that the process terminates completely. Another instance of UASSSClient should be run and used

to find the meeting that has been created and the response should indicate that there are now 2 attendees

at the meeting. By running sufficient UASSSClient instances it will be possible to request more instances

of a new or find meeting processes that the Sender manages, in which case the Unavailable Service

process will be transferred to the UASSSClient.

19.8 Summary

This chapter has shown that mobile processes that utilise mobile channel connections can be created over

communication networks. The org.jcsp.net.mobile package completely hides from the programmer

any need to understand how the process and data object class definitions are loaded, dynamically, over

the network. Furthermore, the package implements a relatively secure means of obtaining class

definitions that are not known to a particular node. This means that class definitions are only obtained

from nodes that have been previously accessed to find a class definition. In addition, because these

classes have to be Serialized for transfer over a network it means that a further level of security is

available in that any class that is received that does not have the designated class serialisation

identification will be rejected. Interested readers are referred to [Chalmers et al, CPA 2007 mobile

channels].

